|
Translated by R. Hardie and R. Gaye.
128 pages - You are on Page 126
Hence Zeno's argument makes a false assumption in asserting that it is impossible for a thing to pass over or severally to come in contact with infinite things in a finite time. For there are two senses in which length and time and generally anything continuous are called 'infinite': they are called so either in respect of divisibility or in respect of their extremities. So while a thing in a finite time cannot come in contact with things quantitatively infinite, it can come in contact with things infinite in respect of divisibility: for in this sense the time itself is also infinite: and so we find that the time occupied by the passage over the infinite is not a finite but an infinite time, and the contact with the infinites is made by means of moments not finite but infinite in number.
The passage over the infinite, then, cannot occupy a finite time, and the passage over the finite cannot occupy an infinite time: if the time is infinite the magnitude must be infinite also, and if the magnitude is infinite, so also is the time. This may be shown as follows. Let AB be a finite magnitude, and let us suppose that it is traversed in infinite time G, and let a finite period GD of the time be taken. Now in this period the thing in motion will pass over a certain segment of the magnitude: let BE be the segment that it has thus passed over. (This will be either an exact measure of AB or less or greater than an exact measure: it makes no difference which it is.) Then, since a magnitude equal to BE will always be passed over in an equal time, and BE measures the whole magnitude, the whole time occupied in passing over AB will be finite: for it will be divisible into periods equal in number to the segments into which the magnitude is divisible. Moreover, if it is the case that infinite time is not occupied in passing over every magnitude, but it is possible to ass over some magnitude, say BE, in a finite time, and if this BE measures the whole of which it is a part, and if an equal magnitude is passed over in an equal time, then it follows that the time like the magnitude is finite. That infinite time will not be occupied in passing over BE is evident if the time be taken as limited in one direction: for as the part will be passed over in less time than the whole, the time occupied in traversing this part must be finite, the limit in one direction being given. The same reasoning will also show the falsity of the assumption that infinite length can be traversed in a finite time. It is evident, then, from what has been said that neither a line nor a surface nor in fact anything continuous can be indivisible.
Aristotle Complete Works
Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/physics.asp?pg=126