Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/greek-mathematics-astronomy.asp?pg=12

ELPENOR - Home of the Greek Word

Three Millennia of Greek Literature
 

T. L. Heath 
A History of Greek Mathematics and Astronomy

From, T. L. Heath, Mathematics and Astronomy,
in R.W. Livingstone (ed.), The Legacy of Greece, Oxford University Press, 1921.

ELPENOR EDITIONS IN PRINT

HOMER

PLATO

ARISTOTLE

THE GREEK OLD TESTAMENT (SEPTUAGINT)

THE NEW TESTAMENT

PLOTINUS

DIONYSIUS THE AREOPAGITE

MAXIMUS CONFESSOR

SYMEON THE NEW THEOLOGIAN

CAVAFY

More...


Page 12

The Pythagorean contributions to geometry were even more remarkable. The most famous proposition attributed to Pythagoras himself is of course the theorem of Eucl. I. 47 that the square on the hypotenuse of any right-angled triangle is equal to the sum of the squares on the other two sides. But Proclus also attributes to him, besides the theory of proportionals, the construction of the 'cosmic figures', the five regular solids.

One of the said solids, the dodecahedron, has twelve regular pentagons for faces, and the construction of a regular pentagon involves the cutting of a straight line 'in extreme and mean ratio' (Eucl. II. 11 and VI. 30), which is a particular case of the method known as the application of areas. This method was fully worked out by the Pythagoreans and proved one of the most powerful in all Greek geometry. The most elementary case appears in Eucl. I. 44, 45, where it is shown how to apply to a given straight line as base a parallelogram with one angle equal to a given angle and equal in area to any given rectilineal figure; this construction is the geometrical equivalent of arithmetical division. The general case is that in which the parallelogram, though applied to the straight line, overlaps it or falls short of it in such a way that the part of the parallelogram which extends beyond or falls short of the parallelogram of the same angle and breadth on the given straight line itself (exactly) as base is similar to any given parallelogram (Eucl. VI. 28, 29). This is the geometrical equivalent of the solution of the most general form of quadratic equation ax±mx²=C, so far as it has real roots; the condition that the roots may be real was also worked out (=Eucl. VI. 27). It is in the form of 'application of areas' that Apollonius obtains the fundamental property of each of the conic sections, and, as we shall see, it is from the terminology of application of areas that Apollonius took the three names parabola, hyperbola, and ellipse which he was the first to give to the three curves.

Another problem solved by the Pythagoreans was that of drawing a rectilineal figure which shall be equal in area to one given rectilineal figure and similar to another. Plutarch mentions a doubt whether it was this problem or the theorem of Eucl. I. 47 on the strength of which Pythagoras was said to have sacrificed an ox.

The main particular applications of the theorem of the square on the hypotenuse, e. g. those in Euclid, Book II, were also Pythagorean; the construction of a square equal to a given rectangle (Eucl. II. 14) is one of them, and corresponds to the solution of the pure quadratic equation x²=ab.

The Pythagoreans knew the properties of parallels and proved the theorem that the sum of the three angles of any triangle is equal to two right angles.


Previous Page / First / Next

Cf. Greek Literature * Greek History Resources
Aristotle's Natural Science

Three Millennia of Greek Literature


Greek Literature - Ancient, Medieval, Modern

Learned Freeware

Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/greek-mathematics-astronomy.asp?pg=12