Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/prior-analytics.asp?pg=80

ELPENOR - Home of the Greek Word

Three Millennia of Greek Literature
ARISTOTLE HOME PAGE  /  ARISTOTLE WORKS  /  SEARCH ARISTOTLE WORKS  

Aristotle PRIOR ANALYTICS Complete

Translated by A. Jenkinson.

Aristotle Bilingual Anthology  Studies  Aristotle in Print

ELPENOR EDITIONS IN PRINT

The Original Greek New Testament
109 pages - You are on Page 80

In negative syllogisms reciprocal proof is as follows. Let B belong to all C, and A to none of the Bs: we conclude that A belongs to none of the Cs. If again it is necessary to prove that A belongs to none of the Bs (which was previously assumed) A must belong to no C, and C to all B: thus the previous premiss is reversed. If it is necessary to prove that B belongs to C, the proposition AB must no longer be converted as before: for the premiss 'B belongs to no A' is identical with the premiss 'A belongs to no B'. But we must assume that B belongs to all of that to none of which longs. Let A belong to none of the Cs (which was the previous conclusion) and assume that B belongs to all of that to none of which A belongs. It is necessary then that B should belong to all C. Consequently each of the three propositions has been made a conclusion, and this is circular demonstration, to assume the conclusion and the converse of one of the premisses, and deduce the remaining premiss.

In particular syllogisms it is not possible to demonstrate the universal premiss through the other propositions, but the particular premiss can be demonstrated. Clearly it is impossible to demonstrate the universal premiss: for what is universal is proved through propositions which are universal, but the conclusion is not universal, and the proof must start from the conclusion and the other premiss. Further a syllogism cannot be made at all if the other premiss is converted: for the result is that both premisses are particular. But the particular premiss may be proved. Suppose that A has been proved of some C through B. If then it is assumed that B belongs to all A and the conclusion is retained, B will belong to some C: for we obtain the first figure and A is middle. But if the syllogism is negative, it is not possible to prove the universal premiss, for the reason given above. But it is possible to prove the particular premiss, if the proposition AB is converted as in the universal syllogism, i.e 'B belongs to some of that to some of which A does not belong': otherwise no syllogism results because the particular premiss is negative.

Previous Page / First / Next Page of PRIOR ANALYTICS
Aristotle Home Page ||| Search Aristotle's works

Plato ||| Other Greek Philosophers ||| Elpenor's Free Greek Lessons

Development of Greek Philosophy ||| History of Greek Philosophy ||| History of Ancient Greece
Three Millennia of Greek Literature

 

Greek Literature - Ancient, Medieval, Modern

  Aristotle Complete Works   Aristotle Home Page & Bilingual Anthology
Aristotle in Print

Elpenor's Greek Forum : Post a question / Start a discussion

Learned Freeware

Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/prior-analytics.asp?pg=80