Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/prior-analytics.asp?pg=71

ELPENOR - Home of the Greek Word

Three Millennia of Greek Literature
ARISTOTLE HOME PAGE  /  ARISTOTLE WORKS  /  SEARCH ARISTOTLE WORKS  

Aristotle PRIOR ANALYTICS Complete

Translated by A. Jenkinson.

Aristotle Bilingual Anthology  Studies  Aristotle in Print

ELPENOR EDITIONS IN PRINT

The Original Greek New Testament
109 pages - You are on Page 71

But from what is false a true conclusion may be drawn, whether both the premisses are false or only one, provided that this is not either of the premisses indifferently, if it is taken as wholly false: but if the premiss is not taken as wholly false, it does not matter which of the two is false. (1) Let A belong to the whole of C, but to none of the Bs, neither let B belong to C. This is possible, e.g. animal belongs to no stone, nor stone to any man. If then A is taken to belong to all B and B to all C, A will belong to all C; consequently though both the premisses are false the conclusion is true: for every man is an animal. Similarly with the negative. For it is possible that neither A nor B should belong to any C, although A belongs to all B, e.g. if the same terms are taken and man is put as middle: for neither animal nor man belongs to any stone, but animal belongs to every man. Consequently if one term is taken to belong to none of that to which it does belong, and the other term is taken to belong to all of that to which it does not belong, though both the premisses are false the conclusion will be true. (2) A similar proof may be given if each premiss is partially false.

(3) But if one only of the premisses is false, when the first premiss is wholly false, e.g. AB, the conclusion will not be true, but if the premiss BC is wholly false, a true conclusion will be possible. I mean by 'wholly false' the contrary of the truth, e.g. if what belongs to none is assumed to belong to all, or if what belongs to all is assumed to belong to none. Let A belong to no B, and B to all C. If then the premiss BC which I take is true, and the premiss AB is wholly false, viz. that A belongs to all B, it is impossible that the conclusion should be true: for A belonged to none of the Cs, since A belonged to nothing to which B belonged, and B belonged to all C. Similarly there cannot be a true conclusion if A belongs to all B, and B to all C, but while the true premiss BC is assumed, the wholly false premiss AB is also assumed, viz. that A belongs to nothing to which B belongs: here the conclusion must be false. For A will belong to all C, since A belongs to everything to which B belongs, and B to all C. It is clear then that when the first premiss is wholly false, whether affirmative or negative, and the other premiss is true, the conclusion cannot be true.

Previous Page / First / Next Page of PRIOR ANALYTICS
Aristotle Home Page ||| Search Aristotle's works

Plato ||| Other Greek Philosophers ||| Elpenor's Free Greek Lessons

Development of Greek Philosophy ||| History of Greek Philosophy ||| History of Ancient Greece
Three Millennia of Greek Literature

 

Greek Literature - Ancient, Medieval, Modern

  Aristotle Complete Works   Aristotle Home Page & Bilingual Anthology
Aristotle in Print

Elpenor's Greek Forum : Post a question / Start a discussion

Learned Freeware

Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/prior-analytics.asp?pg=71