|
Translated by A. Jenkinson.
109 pages - You are on Page 44
(2) But if from the propositions A and B there follows not E but some other conclusion, and if from C and D either A or B follows or something else, then there are several syllogisms, and they do not establish the conclusion proposed: for we assumed that the syllogism proved E. And if no conclusion follows from C and D, it turns out that these propositions have been assumed to no purpose, and the syllogism does not prove the original proposition.
So it is clear that every demonstration and every syllogism will proceed through three terms only.
This being evident, it is clear that a syllogistic conclusion follows from two premisses and not from more than two. For the three terms make two premisses, unless a new premiss is assumed, as was said at the beginning, to perfect the syllogisms. It is clear therefore that in whatever syllogistic argument the premisses through which the main conclusion follows (for some of the preceding conclusions must be premisses) are not even in number, this argument either has not been drawn syllogistically or it has assumed more than was necessary to establish its thesis.
If then syllogisms are taken with respect to their main premisses, every syllogism will consist of an even number of premisses and an odd number of terms (for the terms exceed the premisses by one), and the conclusions will be half the number of the premisses. But whenever a conclusion is reached by means of prosyllogisms or by means of several continuous middle terms, e.g. the proposition AB by means of the middle terms C and D, the number of the terms will similarly exceed that of the premisses by one (for the extra term must either be added outside or inserted: but in either case it follows that the relations of predication are one fewer than the terms related), and the premisses will be equal in number to the relations of predication. The premisses however will not always be even, the terms odd; but they will alternate-when the premisses are even, the terms must be odd; when the terms are even, the premisses must be odd: for along with one term one premiss is added, if a term is added from any quarter. Consequently since the premisses were (as we saw) even, and the terms odd, we must make them alternately even and odd at each addition. But the conclusions will not follow the same arrangement either in respect to the terms or to the premisses. For if one term is added, conclusions will be added less by one than the pre-existing terms: for the conclusion is drawn not in relation to the single term last added, but in relation to all the rest, e.g. if to ABC the term D is added, two conclusions are thereby added, one in relation to A, the other in relation to B. Similarly with any further additions. And similarly too if the term is inserted in the middle: for in relation to one term only, a syllogism will not be constructed. Consequently the conclusions will be much more numerous than the terms or the premisses.
Aristotle Complete Works
Aristotle Home Page & Bilingual Anthology Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/prior-analytics.asp?pg=44