|
Translated by R. Hardie and R. Gaye.
128 pages - You are on Page 56
This discussion, however, involves the more general question whether the infinite can be present in mathematical objects and things which are intelligible and do not have extension, as well as among sensible objects. Our inquiry (as physicists) is limited to its special subject-matter, the objects of sense, and we have to ask whether there is or is not among them a body which is infinite in the direction of increase.
We may begin with a dialectical argument and show as follows that there is no such thing. If 'bounded by a surface' is the definition of body there cannot be an infinite body either intelligible or sensible. Nor can number taken in abstraction be infinite, for number or that which has number is numerable. If then the numerable can be numbered, it would also be possible to go through the infinite.
If, on the other hand, we investigate the question more in accordance with principles appropriate to physics, we are led as follows to the same result.
The infinite body must be either (1) compound, or (2) simple; yet neither alternative is possible.
(1) Compound the infinite body will not be, if the elements are finite in number. For they must be more than one, and the contraries must always balance, and no one of them can be infinite. If one of the bodies falls in any degree short of the other in potency-suppose fire is finite in amount while air is infinite and a given quantity of fire exceeds in power the same amount of air in any ratio provided it is numerically definite-the infinite body will obviously prevail over and annihilate the finite body. On the other hand, it is impossible that each should be infinite. 'Body' is what has extension in all directions and the infinite is what is boundlessly extended, so that the infinite body would be extended in all directions ad infinitum.
Nor (2) can the infinite body be one and simple, whether it is, as some hold, a thing over and above the elements (from which they generate the elements) or is not thus qualified.
Aristotle Complete Works
Aristotle Home Page & Bilingual Anthology Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/physics.asp?pg=56