|
Translated by R. Hardie and R. Gaye.
128 pages - You are on Page 54
(5) Most of all, a reason which is peculiarly appropriate and presents the difficulty that is felt by everybody-not only number but also mathematical magnitudes and what is outside the heaven are supposed to be infinite because they never give out in our thought.
The last fact (that what is outside is infinite) leads people to suppose that body also is infinite, and that there is an infinite number of worlds. Why should there be body in one part of the void rather than in another? Grant only that mass is anywhere and it follows that it must be everywhere. Also, if void and place are infinite, there must be infinite body too, for in the case of eternal things what may be must be. But the problem of the infinite is difficult: many contradictions result whether we suppose it to exist or not to exist. If it exists, we have still to ask how it exists; as a substance or as the essential attribute of some entity? Or in neither way, yet none the less is there something which is infinite or some things which are infinitely many?
The problem, however, which specially belongs to the physicist is to investigate whether there is a sensible magnitude which is infinite.
We must begin by distinguishing the various senses in which the term 'infinite' is used.
(1) What is incapable of being gone through, because it is not in its nature to be gone through (the sense in which the voice is 'invisible').
(2) What admits of being gone through, the process however having no termination, or what scarcely admits of being gone through.
(3) What naturally admits of being gone through, but is not actually gone through or does not actually reach an end.
Further, everything that is infinite may be so in respect of addition or division or both.
Aristotle Complete Works
Aristotle Home Page & Bilingual Anthology Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://ellopos.net/elpenor/greek-texts/ancient-greece/aristotle/physics.asp?pg=54