Reference address : https://ellopos.net/elpenor/greek-texts/ancient-Greece/greek-mathematics-astronomy.asp?pg=8

ELPENOR - Home of the Greek Word

Three Millennia of Greek Literature
 

T. L. Heath 
A History of Greek Mathematics and Astronomy

From, T. L. Heath, Mathematics and Astronomy,
in R.W. Livingstone (ed.), The Legacy of Greece, Oxford University Press, 1921.

ELPENOR EDITIONS IN PRINT

HOMER

PLATO

ARISTOTLE

THE GREEK OLD TESTAMENT (SEPTUAGINT)

THE NEW TESTAMENT

PLOTINUS

DIONYSIUS THE AREOPAGITE

MAXIMUS CONFESSOR

SYMEON THE NEW THEOLOGIAN

CAVAFY

More...


Page 8

No doubt Thales, when he was in Egypt, would see diagrams drawn to illustrate the rules for the measurement of circles and other plane figures, and these diagrams would suggest to him certain similarities and congruences which would set him thinking whether there were not some elementary general principles underlying the construction and relations of different figures and parts of figures. This would be in accord with the Greek instinct for generalization and their wish to be able to account for everything on rational principles.

The following theorems are attributed to Thales: (1) that a circle is bisected by any diameter (Eucl. I, Def. 17), (2) that the angles at the base of an isosceles triangle are equal (Eucl. I. 5), (3) that, if two straight lines cut one another, the vertically opposite angles are equal (Eucl. I. 15), (4) that, if two triangles have two angles and one side respectively equal, the triangles are equal in all respects (Eucl. I. 26). He is said (5) to have been the first to inscribe a right-angled triangle in a circle, which must mean that he was the first to discover that the angle in a semicircle is a right angle (cf. Eucl. III. 31).

Elementary as these things are, they represent a new departure of a momentous kind, being the first steps towards a theory of geometry. On this point we cannot do better than quote some remarks from Kant's preface to the second edition of his Kritik der reinen Vernunft.

'Mathematics has, from the earliest times to which the history of human reason goes back, (that is to say) with that wonderful people the Greeks, travelled the safe road of a science. But it must not be supposed that it was as easy for mathematics as it was for logic, where reason is concerned with itself alone, to find, or rather to build for itself, that royal road. I believe on the contrary that with mathematics it remained for long a case of groping about—the Egyptians in particular were still at that stage—and that this transformation must be ascribed to a revolution brought about by the happy inspiration of one man in trying an experiment, from which point onward the road that must be taken could no longer be missed, and the safe way of a science was struck and traced out for all time and to distances illimitable.... A light broke on the first man who demonstrated the property of the isosceles triangle (whether his name was Thales or what you will)....'

Thales also solved two problems of a practical kind: (1) he showed how to measure the distance of a ship at sea, and (2) he found the heights of pyramids by means of the shadows thrown on the ground by the pyramid and by a stick of known length at the same moment; one account says that he chose the time when the lengths of the stick and of its shadow were equal, but in either case he argued by similarity of triangles.


Previous Page / First / Next

Cf. Greek Literature * Greek History Resources
Aristotle's Natural Science

Three Millennia of Greek Literature


Greek Literature - Ancient, Medieval, Modern

Learned Freeware

Reference address : https://ellopos.net/elpenor/greek-texts/ancient-Greece/greek-mathematics-astronomy.asp?pg=8