|
From, T. L. Heath, Mathematics and Astronomy,
in R.W. Livingstone (ed.), The Legacy of Greece, Oxford University Press, 1921.
Page 22
The Plane Equilibriums is the first scientific treatise on the first principles of mechanics, which are established by pure geometry. The most important result established in Book I is the principle of the lever. This was known to Plato and Aristotle, but they had no real proof. The Aristotelian Mechanics merely 'refers' the lever 'to the circle', asserting that the force which acts at the greater distance from the fulcrum moves the system more easily because it describes a greater circle. Archimedes also finds the centre of gravity of a parallelogram, a triangle, a trapezium and finally (in Book II) of a parabolic segment and of a portion of it cut off by a straight line parallel to the base.
The Sandreckoner is remarkable for the development in it of a system for expressing very large numbers by orders and periods based on powers of myriad-myriads (10,000²). It also contains the important reference to the heliocentric theory of the universe put forward by Aristarchus of Samos in a book of 'hypotheses', as well as historical details of previous attempts to measure the size of the earth and to give the sizes and distances of the sun and moon.
Lastly, Archimedes invented the whole science of hydrostatics. Beginning the treatise On Floating Bodies with an assumption about uniform pressure in a fluid, he first proves that the surface of a fluid at rest is a sphere with its centre at the centre of the earth. Other propositions show that, if a solid floats in a fluid, the weight of the solid is equal to that of the fluid displaced, and, if a solid heavier than a fluid is weighed in it, it will be lighter than its true weight by the weight of the fluid displaced. Then, after a second assumption that bodies which are forced upwards in a fluid are forced upwards along the perpendiculars to the surface which pass through their centres of gravity, Archimedes deals with the position of rest and stability of a segment of a sphere floating in a fluid with its base entirely above or entirely below the surface. Book II is an extraordinary tour de force, investigating fully all the positions of rest and stability of a right segment of a paraboloid floating in a fluid according (1) to the relation between the axis of the solid and the parameter of the generating parabola, and (2) to the specific gravity of the solid in relation to the fluid; the term 'specific gravity' is not used, but the idea is fully expressed in other words.
Cf. Greek Literature * Greek History Resources
Aristotle's Natural Science
Reference address : https://ellopos.net/elpenor/greek-texts/ancient-Greece/greek-mathematics-astronomy.asp?pg=22