Reference address : https://ellopos.net/elpenor/greek-texts/ancient-Greece/aristotle/prior-analytics.asp?pg=49

ELPENOR - Home of the Greek Word

Three Millennia of Greek Literature
ARISTOTLE HOME PAGE  /  ARISTOTLE WORKS  /  SEARCH ARISTOTLE WORKS  

Aristotle PRIOR ANALYTICS Complete

Translated by A. Jenkinson.

Aristotle Bilingual Anthology  Studies  Aristotle in Print

ELPENOR EDITIONS IN PRINT

The Original Greek New Testament
109 pages - You are on Page 49

It is clear then that in every proposition which requires proof we must look to the aforesaid relations of the subject and predicate in question: for all syllogisms proceed through these. But if we are seeking consequents and antecedents we must look for those which are primary and most universal, e.g. in reference to E we must look to Kf rather than to F alone, and in reference to A we must look to KC rather than to C alone. For if A belongs to KF, it belongs both to F and to E: but if it does not follow KF, it may yet follow F. Similarly we must consider the antecedents of A itself: for if a term follows the primary antecedents, it will follow those also which are subordinate, but if it does not follow the former, it may yet follow the latter.

It is clear too that the inquiry proceeds through the three terms and the two premisses, and that all the syllogisms proceed through the aforesaid figures. For it is proved that A belongs to all E, whenever an identical term is found among the Cs and Fs. This will be the middle term; A and E will be the extremes. So the first figure is formed. And A will belong to some E, whenever C and G are apprehended to be the same. This is the last figure: for G becomes the middle term. And A will belong to no E, when D and F are identical. Thus we have both the first figure and the middle figure; the first, because A belongs to no F, since the negative statement is convertible, and F belongs to all E: the middle figure because D belongs to no A, and to all E. And A will not belong to some E, whenever D and G are identical. This is the last figure: for A will belong to no G, and E will belong to all G. Clearly then all syllogisms proceed through the aforesaid figures, and we must not select consequents of all the terms, because no syllogism is produced from them. For (as we saw) it is not possible at all to establish a proposition from consequents, and it is not possible to refute by means of a consequent of both the terms in question: for the middle term must belong to the one, and not belong to the other.

It is clear too that other methods of inquiry by selection of middle terms are useless to produce a syllogism, e.g. if the consequents of the terms in question are identical, or if the antecedents of A are identical with those attributes which cannot possibly belong to E, or if those attributes are identical which cannot belong to either term: for no syllogism is produced by means of these. For if the consequents are identical, e.g. B and F, we have the middle figure with both premisses affirmative: if the antecedents of A are identical with attributes which cannot belong to E, e.g. C with H, we have the first figure with its minor premiss negative. If attributes which cannot belong to either term are identical, e.g. C and H, both premisses are negative, either in the first or in the middle figure. But no syllogism is possible in this way.

Previous Page / First / Next Page of PRIOR ANALYTICS
Aristotle Home Page ||| Search Aristotle's works

Plato ||| Other Greek Philosophers ||| Elpenor's Free Greek Lessons

Development of Greek Philosophy ||| History of Greek Philosophy ||| History of Ancient Greece
Three Millennia of Greek Literature

 

Greek Literature - Ancient, Medieval, Modern

  Aristotle Complete Works   Aristotle Home Page & Bilingual Anthology
Aristotle in Print

Elpenor's Greek Forum : Post a question / Start a discussion

Learned Freeware

Reference address : https://ellopos.net/elpenor/greek-texts/ancient-Greece/aristotle/prior-analytics.asp?pg=49