|
Translated by A. Jenkinson.
109 pages - You are on Page 20
But if one premiss is affirmative, the other negative, whenever the universal is both negative and necessary the conclusion also will be necessary. For if it is not possible that A should belong to any C, but B belongs to some C, it is necessary that A should not belong to some B. But whenever the affirmative proposition is necessary, whether universal or particular, or the negative is particular, the conclusion will not be necessary. The proof of this by reduction will be the same as before; but if terms are wanted, when the universal affirmative is necessary, take the terms 'waking'-'animal'-'man', 'man' being middle, and when the affirmative is particular and necessary, take the terms 'waking'-'animal'-'white': for it is necessary that animal should belong to some white thing, but it is possible that waking should belong to none, and it is not necessary that waking should not belong to some animal. But when the negative proposition being particular is necessary, take the terms 'biped', 'moving', 'animal', 'animal' being middle.
Part 12
It is clear then that a simple conclusion is not reached unless both premisses are simple assertions, but a necessary conclusion is possible although one only of the premisses is necessary. But in both cases, whether the syllogisms are affirmative or negative, it is necessary that one premiss should be similar to the conclusion. I mean by 'similar', if the conclusion is a simple assertion, the premiss must be simple; if the conclusion is necessary, the premiss must be necessary. Consequently this also is clear, that the conclusion will be neither necessary nor simple unless a necessary or simple premiss is assumed.
Aristotle Complete Works
Aristotle Home Page & Bilingual Anthology Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://ellopos.net/elpenor/greek-texts/ancient-Greece/aristotle/prior-analytics.asp?pg=20