|
Translated by J. Stocks.
88 pages - You are on Page 62
Discussion of the other views may be postponed. But this last theory which composes every body of planes is, as the most superficial observation shows, in many respects in plain contradiction with mathematics. It is, however, wrong to remove the foundations of a science unless you can replace them with others more convincing. And, secondly, the same theory which composes solids of planes clearly composes planes of lines and lines of points, so that a part of a line need not be a line. This matter has been already considered in our discussion of movement, where we have shown that an indivisible length is impossible. But with respect to natural bodies there are impossibilities involved in the view which asserts indivisible lines, which we may briefly consider at this point. For the impossible consequences which result from this view in the mathematical sphere will reproduce themselves when it is applied to physical bodies, but there will be difficulties in physics which are not present in mathematics; for mathematics deals with an abstract and physics with a more concrete object. There are many attributes necessarily present in physical bodies which are necessarily excluded by indivisibility; all attributes, in fact, which are divisible. There can be nothing divisible in an indivisible thing, but the attributes of bodies are all divisible in one of two ways. They are divisible into kinds, as colour is divided into white and black, and they are divisible per accidens when that which has them is divisible. In this latter sense attributes which are simple are nevertheless divisible. Attributes of this kind will serve, therefore, to illustrate the impossibility of the view. It is impossible, if two parts of a thing have no weight, that the two together should have weight. But either all perceptible bodies or some, such as earth and water, have weight, as these thinkers would themselves admit. Now if the point has no weight, clearly the lines have not either, and, if they have not, neither have the planes. Therefore no body has weight. It is, further, manifest that their point cannot have weight. For while a heavy thing may always be heavier than something and a light thing lighter than something, a thing which is heavier or lighter than something need not be itself heavy or light, just as a large thing is larger than others, but what is larger is not always large. A thing which, judged absolutely, is small may none the less be larger than other things. Whatever, then, is heavy and also heavier than something else, must exceed this by something which is heavy. A heavy thing therefore is always divisible. But it is common ground that a point is indivisible. Again, suppose that what is heavy or weight is a dense body, and what is light rare. Dense differs from rare in containing more matter in the same cubic area. A point, then, if it may be heavy or light, may be dense or rare. But the dense is divisible while a point is indivisible. And if what is heavy must be either hard or soft, an impossible consequence is easy to draw. For a thing is soft if its surface can be pressed in, hard if it cannot; and if it can be pressed in it is divisible.
Aristotle Complete Works
Elpenor's Greek Forum : Post a question / Start a discussion |
Reference address : https://ellopos.net/elpenor/greek-texts/ancient-Greece/aristotle/heavens.asp?pg=62